LED Grow Light

Vertical Hydroponics—Introduction Part I

Vertical Hydroponics

What happens if you love gardening and growing various kinds of plants, but do not have enough ground surface or horizontal floor area? The concept of vertical farming was developed as a solution to this problem. Imagine the way that tall skyscrapers can be built so sturdily, yet are able to reach up towards the sky while containing so many different rooms across multiple levels, and that will provide you with the basic working principle behind vertical farming. In other words, it is all about cultivating more by stacking multiple layers of planting surfaces.

What Is Vertical Hydroponics?

This basic concept of vertical farming can be easily applied towards what’s known as hydroponics—a way to grow plants without the use of any soil, wherein minerals and other nutrients are provided directly to the roots only via water in a systematic manner and in calculated quantities.

Hydroponic systems can be grown in a greenhouse using natural light, or more commonly in a vertical system using LED lights, to save space. The latter system is what’s known as Vertical Hydroponics—the setting up of a hydroponic farm, except in a vertical manner. Gravity plays a major role, since the nutrient-rich water is fed from the top of the system and flows down to the bottom, where it is collected.

This practice of soil-free vertical gardening traces its roots all the way back to Ancient history. The Babylonians had a similar idea when they built the Hanging Gardens along the Euphrates River in Babylonia around 600 BC—an Ancient Wonder which had flowers, shrubs and even trees growing in massive tiered gardens. Other records of hydroponics in ancient times include the floating farms created by the Aztecs around Tenochtitlan in Mexico in the 10th-11th century, as well as the explorer Marco Polo’s writings of the late 13th century, describing similar floating gardens during his travels to China.

Scientific experiments done to test plant growth using various cultures from water, soil and air were recorded from the year 1600 onwards by various chemists. The long search for the macro-nutrients essential for plant growth without soil culminated around 1860, when two German botanists, Julius von Sachs and Wilhelm Knop, were able to grow plants by totally immersing their roots in a water solution containing minerals of nitrogen, phosphorus, potassium, magnesium, sulfur, and calcium, and delivered the first standard formula for the specific nutrient solutions dissolved in water to allow the growth of plants in it. This was the origin of “nutriculture”, a word that was changed in 1937 to “hydroponics”—combining two Greek words “Hydro” (water) and “Ponos” (labor).

Studies have shown that vertical hydroponics systems can aid in efficient water savings, up to 90 percent. The closed loop system prevents runoff into waterways, while growing indoors can reduce pests, diseases, and issues related to fickle weather. A vertical hydroponics system is efficient in multiple ways, has various advantages, and can be built, operated and maintained even at your home.

How Does a Vertical Hydroponic System Work?

There are two main vertical hydroponic system designs—Vertical Hydroponic Tower and Zig-Zag Vertical Hydroponic System.  Due to their unique dynamics, both of these vertical designs use a closed, constant flow system called the Nutrient Film Technique (NFT), which involves having a constant thin stream of water flowing over the root system of the plants.

Vertical Hydroponic Tower

In a typical vertical hydroponic tower, a tube is connected to a small water reservoir at the bottom, wherein a hydroponic pump will assist in pumping the water to the top. From there, the natural assistance of gravity is used to bring water down in a controlled manner back to the reservoir, the process of which delivers the nutrients to the plant.

You can either use a single tube to deliver water to the top level or connect multiple channels to different layers for optimal delivery of water and nutrients. The plants are placed in net cups, typically angled at 45 degrees, to easily allow the water to flow through the roots.

Zig-Zag Vertical Hydroponic System

Some designs use multiple PVC pipes arranged on a trellis frame at diagonal angles (known as the zig-zag vertical system) instead of creating a vertical tower. The pipes are usually in a compact zig-zag pattern going up. The plants are housed in net cups, placed at regular 90-degree angles.

These systems also use NFT techniques to grow the plants. The water containing essential nutrients is pumped to the top pipe, from where it flows down in a constant stream.

To be continued…

Back to list

Leave a Reply